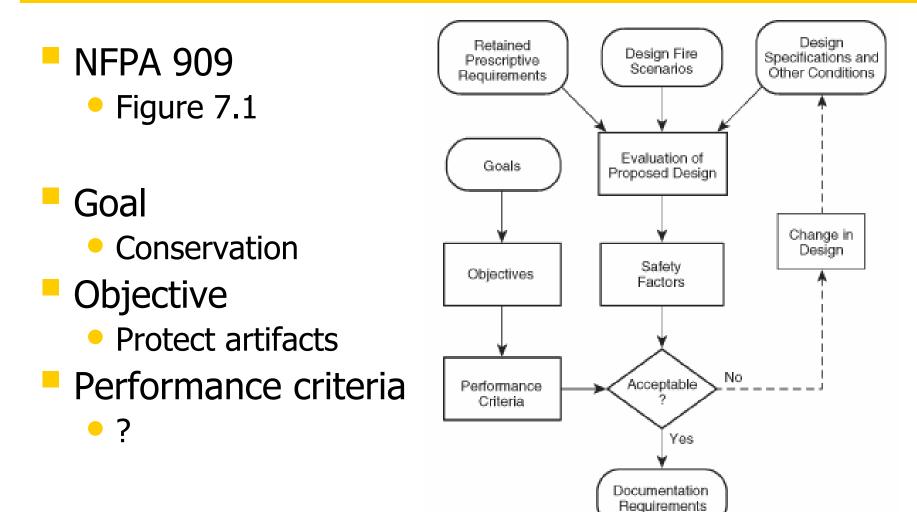
Risk Assessment for Cultural Institutions: Fire Testing vs Computer Modeling

Frederick W. Mowrer, Ph.D., P.E. Department of Fire Protection Engineering University of Maryland

Introduction

- A number of codes and standards address the fire protection of cultural institutions:
 - NFPA 909
 - Protection of Cultural Resource Properties Museums, Libraries and Places of Worship
 - NFPA 914
 - Fire Protection of Historic Structures
- These documents identify two options to meet life safety and property conservation goals and objectives:
 - Prescriptive-based
 - Performance-based ... focus of this discussion


Compliance options

Prescriptive option

- Codes and standards address specific design requirements
- Relationship between specified requirements and performance objectives is implicit (or nonexistent)
- Easy to review and enforce
- Performance-based option
 - Goals and objectives are explicitly stated
 - Achievement of objectives demonstrated through engineering analysis of performance criteria
 - More difficult to review and evaluate

Performance-based design

Performance criteria

- "Culturally significant features, rooms, spaces, or contents shall not be exposed to instantaneous or cumulative fire effects that would cause irreversible damage."
 - 9.2.2.2 NFPA 909
- How can this performance criterion be achieved and demonstrated?
 - A.9.2.2.2 NFPA 909 addresses this issue

Performance criteria

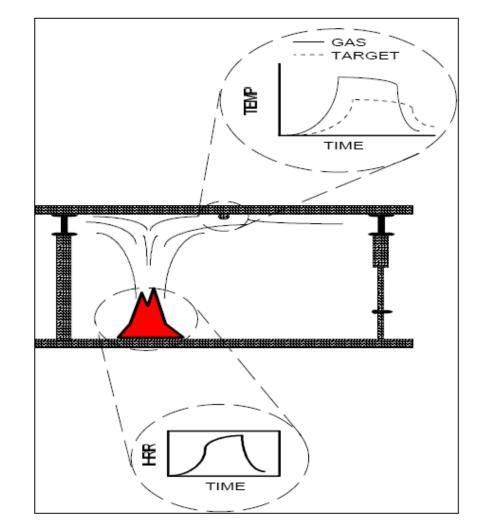
- Demonstrate for each design fire scenario that
 - each space will be fully isolated from the fire before the <u>smoke or thermal layer</u> descends to a level where irreversible damage can occur
 - the <u>smoke and thermal layer</u> will not descend to a level where irreversible damage can occur in any room
 - no fire effects will reach any space beyond the room of origin

A.9.2.2.2 NFPA 909 recommendations

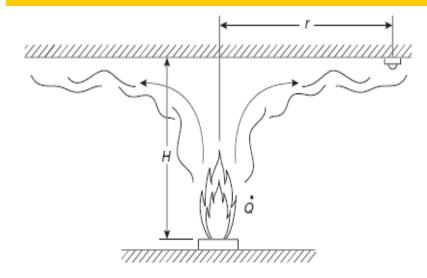
Performance criteria

- The recommendations in NFPA 909 (A.9.2.2.2) point toward the use of fire modeling to demonstrate compliance ...
- but is fire modeling currently up to this challenge?

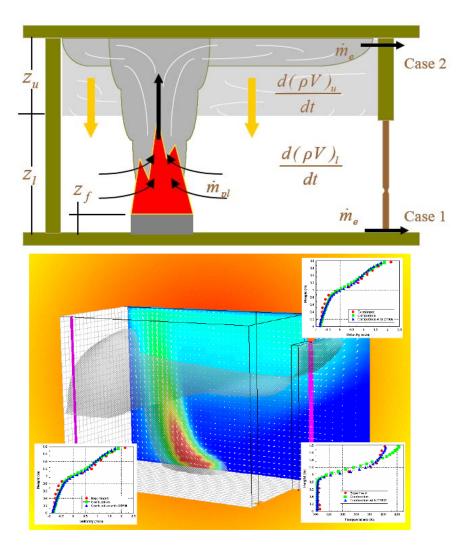
What is fire modeling?



- A fire model is a mathematical prediction of fire growth, environmental conditions, and potential effects on structures, systems or components ...
 - (3.3.26 NFPA 909)


What is fire modeling?

Fire source Specified Predicted Smoke / heat transport Target response Conditions at target Target vulnerability



Types of fire models

CorrelationsZone modelsCFD models

NARA Conference - 2008

How fire models are used

Predict fire growth / fire suppression

Current capabilities are limited

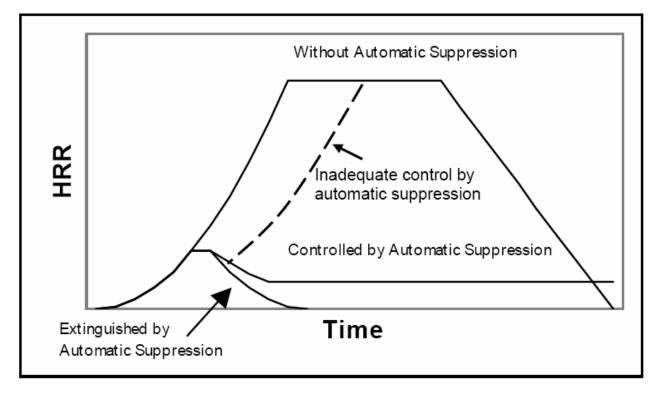
Calculate conditions resulting from specified fire

- Current capabilities are relatively good
- Both methods require specification of design fire scenarios

Design fire scenarios

Fire Scenario (3.3.72.2 NFPA 909)

- "A set of conditions that defines the development of fire, the spread of combustion products throughout a building or portion of a building, the reactions of people to fire, and the effects of combustion products."
- Design Fire Scenario (3.3.72.1 NFPA 909)
 - "A fire scenario used for evaluation of a proposed design."



Design fire scenarios

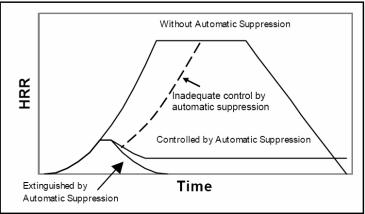
- Each fire scenario shall be challenging, but realistic, with respect to <u>at least one</u> <u>of</u> the following scenario specifications (9.5.2.2 NFPA 909):
 - Initial fire location
 - Early rate of growth in fire severity
 - Smoke generation
- What about fire suppression?

The role of suppression

As adapted from the SFPE performance-based design guide

The role of suppression

- The ability of current fire models to predict fire suppression is (very) limited
- Fire models that attempt to calculate fire suppression are based on empirical relations derived from limited large-scale fire test results


NARA Conference - 2008

Credit: www.fire.nist.gov

The role of suppression

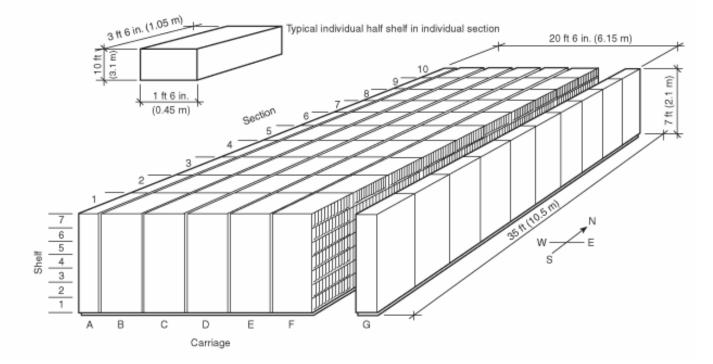
- Fire modelers typically <u>specify</u> the influence of fire suppression on a design fire scenario
 - Time of fire detection is modeled, then it is assumed the fire will be extinguished or controlled when the suppression system discharges
 - The impact of agent discharge on environmental conditions is typically ignored
 - e.g., effect of agent discharge on smoke layer stability

NARA Conference - 2008

The role of fire testing

- Large-scale fire testing is still an essential part of fire suppression system design
 - Needed to prove suppression effectiveness for proposed configurations / designs
 - Needed to demonstrate that conservation objectives will be achieved

Successful suppression ≠ successful conservation


- Each test represents only one of many scenarios
 Ignition source / location / fuel configuration / building geometry / ventilation ...
- Large-scale fire testing is very expensive
 ~\$50,000 per test for warehousing tests
- Conservation issues (i.e., artifact damage) are not typically assessed in fire suppression tests
 Some exceptions

Example

Compact mobile shelving fire research

FIGURE I.3 Mobile Shelving Array Terminology and Dimensions.

NARA Conference - 2008

Example

Compact mobile shelving fire research

- 1978 GSA sponsored fire tests at FM
- 1989 NARA sponsored fire tests at UL
- 1991 National Archives/Library of Canada sponsored tests at NRCC
- Current FPRF sponsored fire tests

Summary

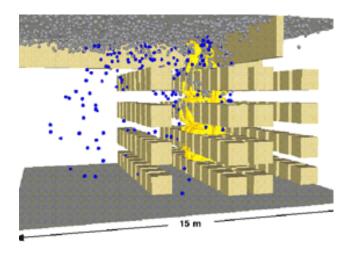
Fire modeling is very useful for:

Parametric studies of different variables

What if ... the fire is twice as big?

- Fire hazard analyses of specified scenarios
- Estimating times for detector activation
- Fire modeling is NOT YET reliable for:
 - Predicting fire growth / flame spread
 - Predicting suppression system effectiveness

Summary


Fire testing is still necessary to:

- Evaluate flame spread / fire growth potential
- Evaluate fire suppression effectiveness
 - High challenge / unique storage arrangements
 - Complex storage / ventilation conditions
- Evaluate damage potential to artifacts
 - Thermal and nonthermal damage from smoke
 - Fire suppression agent / decomposition product effects

Summary

Fire testing should be augmented by modeling

- Pre-test modeling
 - Help define fire test parameters / measurements
- Post-test modeling
 - Help understand / extend fire test results
 - Help validate the fire model
- Example
 - FPRF project on sprinkler / vent / draft curtain interactions

Risk Assessment for Cultural Institutions: Fire Testing <u>AND</u> Computer Modeling

Frederick W. Mowrer, Ph.D., P.E. Department of Fire Protection Engineering University of Maryland

