

Low Oxygen Fire Suppression at the British Library

Julian Taylor

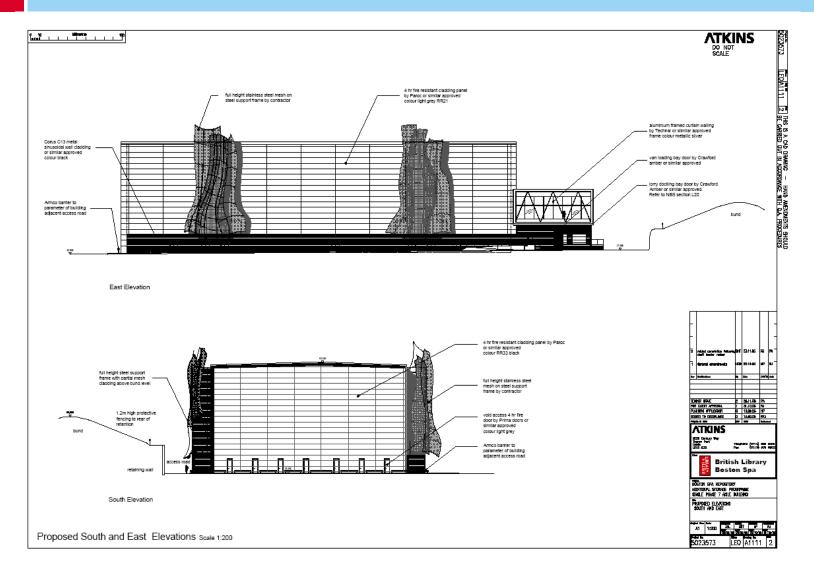
Construction Project Sponsor

London UK

Low Oxygen Fire Suppression at the British Library

- The British Library
- ASP: an archive for the 21st Century
- Fire protection in UK archives: the received wisdom
- Why sprinklers wouldn't work
- Benefits of Low Oxygen ...
- and why it's not for everyone
- Risk, Cost, Environment
- Implementation

The British Library at St Pancras, London


Collections

- National library of the United Kingdom
- Preserve British written heritage
- We hold collections dating back to 300 BC, in all written languages, from all over the world
- We receive a copy of every publication produced in the UK and the Republic of Ireland
- Currently, storage amounts to 470 miles of shelving
- 3 million new items are incorporated every year requiring an additional 7.8 miles of shelving

Additional Storage Programme (ASP)

- 162 miles storage ('til 2016)
- High Density, High Bay, fully Automated
- Sprinklers, fire compartments
- High sensitivity smoke detection systems
- Temperature 59°F
- Relative Humidity 52%
- 70 year design life
- Energy efficiency / sustainability
- Minimal environmental impact

The ASP building

ASP aerial view 2007

ASP construction: interior prior to racking installation

PAROC mineral wool composite panel cladding

4-hour fire rating

Racking 70 feet tall

Crane aisles 2.6 feet wide

Architects model of racking and crane

Fully automated retrieval and delivery

Automation test cell Spring 2007

- Racking
- Conveyors
- Load handlers
- Crane chassis
- Bespoke totes

Fire Protection in UK Archives – the received wisdom

British Standard 5454:2000

- Sprinklers
- Fire compartments
- 4-hour protection
- Smoke extraction

The reality

- Risk of accidental or partial water discharge
- Freezers to salvage wet books
- For some: no fire suppression at all
- Inefficient building design

The Problem with Sprinklers (generally, and for ASP)

- Reactive model (thermal trigger): fire is a prerequisite
- Paper meets fire, smoke, and next... water
- Sprinkler heads required at all 25 levels of racking
- Fire Compartments incompatible with efficient automation and HD building design
- How maintain sprinkler pipes in racking (up to 70 feet in height)?
- Leaks or accidental discharge
- Totes fill with water, books are immersed, racking..?

An alternative to sprinklers?

Wagner test facility
Germany 2004

- Oxyacetylene torch
- •15% Oxygen level in the room
- Ordinary office paper

Low Oxygen (OxyReduct)

OxyReduct used in mainland Europe by the Gas, Oil, IT, and Chemical industries

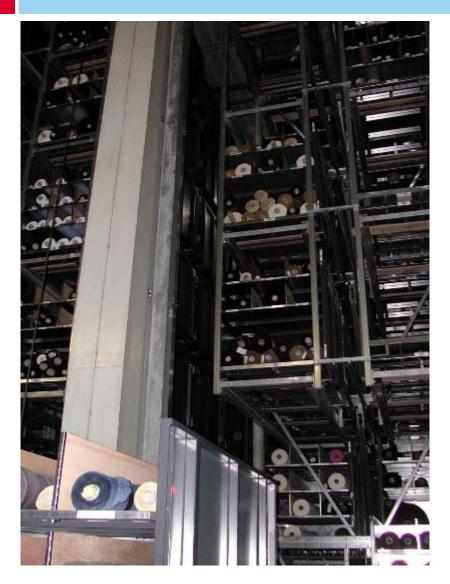
Used where water would cause more problems

Approved by European fire institutes and insurance bodies

Benefits of Low Oxygen

- Preventative model
- Nitrogen is an inert gas: no effect on paper-based collections
- Ideal for new build with automation
- Proven effectiveness in preventing fire
- Early detection of even non-visible pyrolysis
- Continuous monitoring throughout storage space
- Assets are protected for min. 72 hours even if OxyReduct system fails catastrophically
- Simple to install and maintain

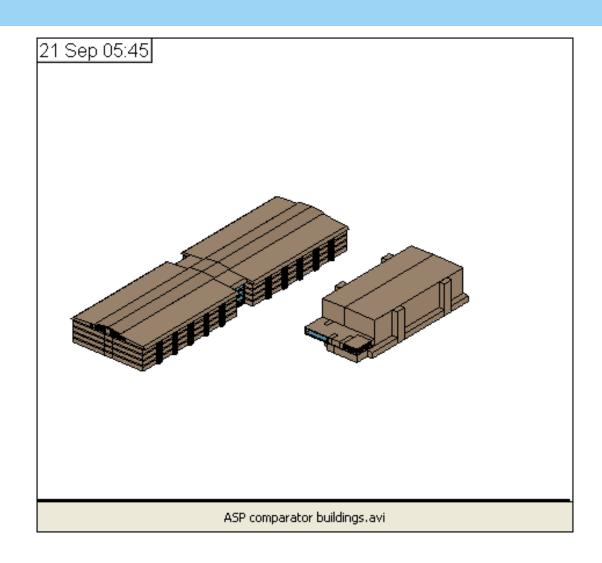
... not for everyone? Issues in legacy buildings


Groningen University Archive

Groningen University Archive

Further investigation & risk assessment

Hugo Boss cloth warehouse Germany


2002: two cloth storage warehouses with sprinklers

2004: single cloth storage warehouse with OxyReduct

Hugo Boss not viable if cloth stocks lost to fire

Building holds next 3-4 years' of stock

Environmental impact

Annual energy comparison

SUMMARY OF RESULTS

						_
	Annual Energy Comparison		Annual Carbon Emissions		Annual Carbon Dioxide Emissions	
Elemental Breakdown	ASRS Building (MWh)	Comparator Building (MWh)	ASRS Building (tC)	Comparator Building (tC)	ASRS Building (tCO ₂)	Comparator Building (tCO ₂)
Gas Consumption						
Boilers	50	833	3	44	10	162
Elec Consumption						
Fans	1 364	3 456	154	390	566	1 433
Chillers - Sensible Cooling	679	1 440	77	163	282	597
Chillers - Latent Cooling	36	493	4	56	15	204
Pumps	31	86	4	10	13	36
Lights	0	1 225	0	138	0	508
Cranes	919	0	104	0	381	0
Oxygen Reduction System	575	0	65	0	238	0
Total Energy Consumption	3 654	7 533	411	801	1 505	2 940

Cost comparison with sprinklers

Suppression method					
	System	Secondary			
OxyReduct \$1.05M		Saving on smoke detection system \$40,000			
	70 year cost	Annual maintenance costs \$17,000			
	\$3.3M	Annual power consumption \$26,000			
Sprinklers	\$1.58M	Additional building cost due to increased building size \$900,000			
	70 year cost \$3.9M	Annual maintenance costs \$20,000			
	φ3.311	Running cost estimate \$500 per annum.			

Implementation at the British Library: specification

- BS 5839 to P1 standard
- 15% Oxygen level throughout storage areas
- Compatible with site wide GENT fire detection/alarm system
- Independent parallel HSSD system
- Nitrogen tanker port
- 3 Nitrogen compressors: 2 online, 1 standby, all 3 in emergency
- Building Air Leakage Index target value: 0.5

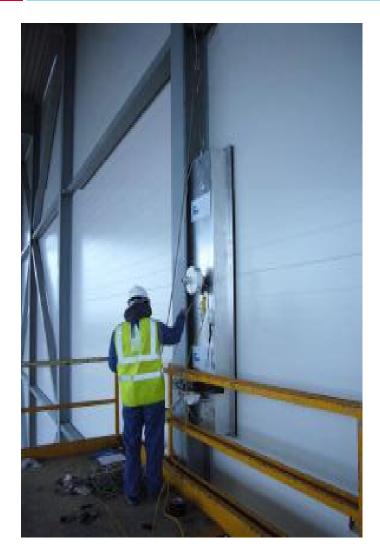
Implementation: building air tightness

Hammersens, Osnabruck

PAROC air test box:

- 4 metres square
- 400mm thickness
- 4-hour fire resistance
- High thermal capacity
- ASP: 11 KM of joints

ALI value of 1 =


1 cubic metre of air leaking through

1 square metre of building envelope

in 1 hour

Implementation: air tightness testing during construction

Concluding remarks

- Benefits of Low Oxygen
- Do sprinklers have a future in archives?
- Progress on-site
- Air tightness test results
- Experience a Low Oxygen environment ...

IAMFA Conference 2008

IAMFA 2008 London Conference

15th – 17th September

Visit to ASP site on September 18th

Tour the ASP building and breathe 15% Oxygen

More information:

http://www.iamfa.org/